Activation of Escherichia coli leuV transcription by FIS.

نویسندگان

  • W Ross
  • J Salomon
  • W M Holmes
  • R L Gourse
چکیده

The transcription factor FIS has been implicated in the regulation of several stable RNA promoters, including that for the major tRNALeu species in Escherichia coli, tRNA1Leu. However, no evidence for direct involvement of FIS in tRNA1Leu expression has been reported. We show here that FIS binds to a site upstream of the leuV promoter (centered at -71) and that it directly stimulates leuV transcription in vitro. A mutation in the FIS binding site reduces transcription from a leuV promoter in strains containing FIS but has no effect on transcription in strains lacking FIS, indicating that FIS contributes to leuV expression in vivo. We also find that RNA polymerase forms an unusual heparin-sensitive complex with the leuV promoter, having a downstream protection boundary of approximately -7, and that the first two nucleotides of the transcript, GTP and UTP, are required for formation of a heparin-stable complex that extends downstream of the transcription start site. These studies have implications for the regulation of leuV transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple mechanisms are used for growth rate and stringent control of leuV transcriptional initiation in Escherichia coli.

Expression of the Escherichia coli leuV operon, which contains three tRNA(1)(Leu) genes, is regulated by several mechanisms including growth-rate-dependent control (GRDC) and stringent control (SC). Structural variants of the leuV promoter which differentially affect these regulatory responses have been identified, suggesting that promoter targets for GRDC and SC may be different and that GRDC ...

متن کامل

Activation of transcription initiation from a stable RNA promoter by a Fis protein-mediated DNA structural transmission mechanism.

The leuV operon of Escherichia coli encodes three of the four genes for the tRNA1Leu isoacceptors. Transcription from this and other stable RNA promoters is known to be affected by a cis-acting UP element and by Fis protein interactions with the carboxyl-terminal domain of the alpha-subunits of RNA polymerase. In this report, we suggest that transcription from the leuV promoter also is activate...

متن کامل

Activation of Escherichia coli rRNA transcription by FIS during a growth cycle.

rRNA transcription in Escherichia coli is activated by the FIS protein, which binds upstream of rrnp1 promoters and interacts directly with RNA polymerase. Analysis of the contribution of FIS to rrn transcription under changing physiological conditions is complicated by several factors: the wide variation in cellular FIS concentrations with growth conditions, the contributions of several other ...

متن کامل

Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB P1 promoter.

FIS, a site-specific DNA binding and bending protein, is a global regulator of gene expression in Escherichia coli. The ribosomal RNA promoter rrnB P1 is activated 3- to 7-fold in vivo by a FIS dimer that binds a DNA site immediately upstream of the DNA binding site for the C-terminal domain (CTD) of the alpha subunit of RNA polymerase (RNAP). In this report, we identify several FIS side chains...

متن کامل

Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli.

The factor-for-inversion stimulation protein (Fis) is a global regulatory protein in Escherichia coli that activates ribosomal RNA (rRNA) transcription by binding to three upstream activation sites of the rRNA promoter and enhances transcription 5- to 10-fold in vivo. Fis overexpression results in different effects on cell growth depending on nutrient conditions. Differential proteome analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 12  شماره 

صفحات  -

تاریخ انتشار 1999